

T410: Nanotecnología para la conversión y almacenamiento de energía

Fernanda Jiménez Maldonado¹

Leonardo Vivas^{1,2}

Dinesh Pratap Singh^{1,2}

¹Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3493, Santiago, Estación Central 9170124, Chile. ANID – ²Instituto Milenio de Investigación en Óptica, Alto Nahuelbuta 2510, Casa 4, San Pedro de la Paz, Concepción 4130691, Chile

Geles como electrolitos para supercapacitores de estado sólido

La creciente demanda de nuevos y mejores dispositivos electrónicos ha impulsado el desarrollo tecnológico de nuevos y más eficientes dispositivos de almacenamiento de energía que hacen de soporte vital a estos aparatos, además se busca que sean seguros de usar y amigables con el medio ambiente. Un dispositivo de almacenamiento que cumple estas especificaciones es el supercapacitor, es un dispositivo que permite almacenar energía comparable a la de una batería convencional, además de que puede cargarse y descargarse más rápido y por muchos más ciclos de carga y descarga que las baterías que usamos hoy en día. En este trabajo mostramos el ensamblado de un supercondensador de estado sólido [1-2] formado por un gel electrolítico biodegradable hecho a base de agar-agar y por electrodos basado en óxido de grafeno reducido decorado con nanopartículas de oro (rGO/Au). El gel electrolítico se sintetizó usando un método rápido por microondas y se formó a partir de una solución de KOH y KI que gelifica con la incorporación de agar-agar. De la caracterización electroquímica [3] del supercapacitor se obtuvieron curvas de voltametría cíclica de las que se calculan valores de capacitancia específica de 17 Fg⁻¹ a una velocidad de barrido de 5 mVs⁻¹. La capacitancia específica del dispositivo mejora al sustituir el gel electrolítico por uno sintetizado a partir de una solución de KOH, KI y oxígeno de grafeno, del que se obtiene un valor de 20 Fg⁻¹. Además, se observa que la eficiencia electroquímica de los dispositivos se mantiene por 20 mil ciclos de carga y descarga y la integridad física del gel no muestra cambios significativos durante estos ciclos. Son resultados prometedores para el posible uso de estos materiales como dispositivos de almacenamiento de energía.

Agradecimientos

Este trabajo fue financiado por los proyectos ANID, FONDECYT Regular 2023, N°1231714 y Millennium Science Initiative Program-ICN17_012.

Referencias

- [1] Xing Hu et al 2018. doi.org/10.1149/2.0481807jes
- [2] B. Jinisha et al 2019. doi.org/10.1007/s10008-019-04428-w
- [3] S. Zhang et al 2014. doi.org/10.1002/aenm.201401401